Purdue UniversityWebsiteAcademic Catalog
Computer ScienceDepartment Website
BS Degree in Computer Science: Systems Softwaresource 1source 2source 3
CS Courses
- Problem Solving And Object-Oriented ProgrammingCS 18000 (4)introCS 18000: Problem Solving And Object-Oriented Programming
Problem solving and algorithms, implementation of algorithms in a high level programming language, conditionals, the iterative approach and debugging, collections of data, searching and sorting, solving problems by decomposition, the object-oriented approach, subclasses of existing classes, handling exceptions that occur when the program is running, graphical user interfaces (GUIs), data stored in files, abstract data types, a glimpse at topics from other CS courses.
- Foundations Of Computer ScienceCS 18200 (3)introCS 18200: Foundations Of Computer Science
Logic and proofs; sets, functions, relations, sequences and summations; number representations; counting; fundamentals of the analysis of algorithms; graphs and trees; proof techniques; recursion; Boolean logic; finite state machines; pushdown automata; computability and undecidability.
- Programming In CCS 24000 (3)introCS 24000: Programming In C
The UNIX environment, C development cycle, data representation, operators, program structure, recursion, macros, C preprocessor, pointers and addresses, dynamic memory allocation, structures, unions, typedef, bit-fields, pointer/structure applications, UNIX file abstraction, file access, low-level I/O, concurrency.
- Computer ArchitectureCS 25000 (4)introCS 25000: Computer Architecture
Digital logic: transistors, gates, and combinatorial circuits; clocks; registers and register banks; arithmetic-logic units; data representation: big-endian and little-endian integers; ones and twos complement arithmetic; signed and unsigned values; Von-Neumann architecture and bottleneck; instruction sets; RISC and CISC designs; instruction pipelines and stalls; rearranging code; memory and address spaces; physical and virtual memory; interleaving; page tables; memory caches; bus architecture; polling and interrupts; DMA; device programming; assembly language; optimizations; parallelism; data pipelining.
- Data Structures And AlgorithmsCS 25100 (3)introCS 25100: Data Structures And Algorithms
Running time analysis of algorithms and their implementations, one-dimensional data structures, trees, heaps, additional sorting algorithms, binary search trees, hash tables, graphs, directed graphs, weighted graph algorithms, additional topics.
- Systems ProgrammingCS 25200 (4)sysCS 25200: Systems Programming
Low-level programming; review of addresses, pointers, memory layout, and data representation; text, data, and bss segments; debugging and hex dumps; concurrent execution with threads and processes; address spaces; file names; descriptors and file pointers; inheritance; system calls and library functions; standard I/O and string libraries; simplified socket programming; building tools to help programmers; make and make files; shell scripts and quoting; Unix tools including sed, echo, test, and find; scripting languages such as awk; version control; object and executable files (.o and a.out); symbol tables; pointers to functions; hierarchical directories; and DNS hierarchy; programming embedded systems.
- Sophomore Development Seminarornot (it's just strongly recommended)CS 29100 (1)specialCS 29100: Sophomore Development Seminar
Presentations by corporate partners about careers in computer science. Presentations by faculty about careers in academia and research. Students learn about upper-division courses, tour research laboratories, and attend job fairs.
- pick 3
Software Engineering ICS 30700 (3)softengCS 30700: Software Engineering IAn introduction to the methods and tools of software engineering; software life cycle; specification and design of software, software testing, cost and effort estimation; laboratory exercises with design, testing, and other tools.
Competitive Programming IICS 31100 (2)algsCS 31100: Competitive Programming IICP2 teaches experienced programmers additional techniques to solve interview and competitive programming problems and builds on material learned in CP1. This includes specific algorithmic techniques such as [shortest paths, topological sort, MST, union find, range queries], advanced algorithms surrounding trees and DAGs, advanced problem types in [dynamic programming, backtracking/simulation, mathematics, string processing], and more. It can be viewed as a programming complement to CS 38100, with some overlap in content.
Competitive Programming IIICS 41100 (2)algsCS 41100: Competitive Programming IIICP3 teaches experienced programmers additional techniques to solve competitive programming problems and builds on material learned in CP1 and CP2. This includes algorithmic techniques in topics such as [network flow, computational geometry, graph matching, NP-hard problems]. Primarily, CP3 prepares students to compete in programming contests, which means most class time is focused on simulating contest environments and teaching teamwork and communication alongside problem practice.
Fundamentals Of Computer GraphicsCS 33400 (3)graphicsCS 33400: Fundamentals Of Computer GraphicsFundamental principles and techniques of computer graphics. The course covers the basics of going from a scene representation to a raster image using OpenGL. Specific topics include coordinate manipulations, perspective, basics of illumination and shading, color models, texture maps, clipping and basic raster algorithms, fundamentals of scene constructions. CS 31400 is recommended.
Cloud ComputingCS 35100 (3)sysCS 35100: Cloud ComputingIntroduction to cloud computing. Cloud data center infrastructure, public and private clouds, servers and virtualized servers, data center networks and virtualized networks, virtualized disk, file, and object storage, the concept of scale-out, algorithms and programming systems used in the design and implementation of cloud-native software, especially using containers and orchestration systems, microservices, serverless designs, controller-based designs, edge and fog computing, security in a cloud environment, programming models.
Principles Of Concurrency And ParallelismCS 35300 (3)sysCS 35300: Principles Of Concurrency And ParallelismImportant concepts, models, algorithms, abstractions, and implementation aspects of concurrent and parallel programs. Topics include: techniques used to describe concurrent programs (e.g., threads, events, co-routines, continuations), abstractions for shared-memory and message-passing programs, relaxed memory models, livelock and deadlock detection, lock-free algorithms, data races and atomicity, scheduling techniques, process calculi, and software transactions.
Introduction To The Analysis Of AlgorithmsCS 38100 (3)algsCS 38100: Introduction To The Analysis Of AlgorithmsTechniques for analyzing the time and space requirements of algorithms. Application of these techniques to sorting, searching, pattern-matching, graph problems, and other selected problems. Brief introduction to the intractable (NP-hard) problems.
Computer SecurityCS 42600 (3)sysCS 42600: Computer SecurityA survey of the fundamentals of information security. Risks and vulnerabilities, policy formation, controls and protection methods, database security, encryption, authentication technologies, host-based and network-based security issues, personnel and physical security issues, issues of law and privacy.
Introduction To Relational Database SystemsCS 44800 (3)sysCS 44800: Introduction To Relational Database SystemsAn in-depth examination of relational database systems including theory and concepts as well as practical issues in relational databases. Modern database technologies such as object-relational and Web-based access to relational databases. Conceptual design and entity relationship modeling, relational algebra and calculus, data definition and manipulation languages using SQL, schema and view management, query processing and optimization, transaction management, security, privacy, integrity management.
Programming LanguagesCS 45600 (3)plsCS 45600: Programming LanguagesConcepts for structuring data, computation, and whole programs. Object-oriented languages, functional languages, logic- and rule-based languages. Data types, type checking, exception handling, concurrent processes, synchronization, modularity, encapsulation, interfaces, separate compilation, inheritance, polymorphism, dynamic binding, subtyping, overloading, beta-reduction, unification.
Embedded SystemsCS 48900 (3)sysCS 48900: Embedded SystemsSoftware for embedded systems; programming with extreme constraints on memory, storage, and processing power; programming models, including synchronous, asynchronous, and concurrent; programming systems that run forever; use of Finite State Machines (FSMs); review of embedded hardware and available boards; asynchronous and synchronous serial connections (e.g., RS232 and SPI); General Purpose I/O (GPIO) pins; relays, servos, and other peripherals; design for low power; battery characteristics; systems that communicate over computer networks and the Internet; current industry practices; design of embedded projects; working in teams.
- Compilers: Principles And PracticeCS 35200 (3)plsCS 35200: Compilers: Principles And Practice
The theory and practice of programming language translation, compilation, and run-time systems, organized around a significant programming project to build a compiler for a simple but nontrivial programming language. Modules, interfaces, tools. Data structures for tree languages. Lexical analysis, syntax analysis, abstract syntax. Symbol tables, semantic analysis. Translation, intermediate code, basic blocks, traces. Instruction selection, CISC and RISC machines. Liveness analysis, graph coloring register allocation. Supplemental material drawn from garbage collection, object-oriented languages, higher-order languages, dataflow analysis, optimization, polymorphism, scheduling and pipelining, memory hierarchies.
- Operating SystemsCS 35400 (3)sysCS 35400: Operating Systems
Introduction to operating systems. Computer system and operating system architectures, processes, inter-process communication, inter-process synchronization, mutual exclusion, deadlocks, memory hierarchy, virtual memory, CPU scheduling, file systems, I/O device management, security.
- Junior Resources Seminarornot (it's just strongly recommended)CS 39100 (1)impactCS 39100: Junior Resources Seminar
This seminar course engages a number of outside speakers who typically present information on the role of research in computer science, how the research components of computer science relate to each other, approaches to software development in industry, different types of application development paradigms, technological trends, and societal, ethical, and legal issues. The credit may be used only toward free electives.
- Computer NetworksCS 42200 (3)sysCS 42200: Computer Networks
Undergraduate-level introduction to computer networks and data communication. Low-level details of media, signals, and bits: time division and frequency division multiplexing; encoding; modulation; bandwidth, throughput, and noise. Packet transmission: Local Area Network (Ethernet, FDDI) and Wide Area Network technologies (ATM); wireless networks; network interconnection with repeaters, bridges, and switches; DSU/CSU; xDSL and cable modems. Internetworking: router-based architecture; IP addressing; address binding with ARP; datagram encapsulation and fragmentation; UDP and TCP, retransmission; protocol ports; ICMP and error handling. Network applications: client/server concept; port demultiplexing; program interface to protocols (API); use by clients and servers; domain name system; TELNET; Web technologies including HTTP, CGI, Java; RPC and middleware; network management.
Math/Stat Courses
- orPlane Analytic Geometry And Calculus IMA 16100 (5)mathMA 16100: Plane Analytic Geometry And Calculus I
Introduction to differential and integral calculus of one variable, with applications. Some schools or departments may allow only 4 credit hours toward graduation for this course. Designed for students who have not had at least a one-semester calculus course in high school, with a grade of “A” or “B”. Not open to students with credit in MA 16500. Demonstrated competence in college algebra and trigonometry.
Plane Analytic Geometry And Calculus IIMA 16200 (5)mathMA 16200: Plane Analytic Geometry And Calculus IIContinuation of MA 16100. Vectors in two and three dimensions, techniques of integration, infinite series, conic sections, polar coordinates, surfaces in three dimensions. Some schools or departments may allow only 4 credit hours toward graduation for this course.
Analytic Geometry And Calculus IMA 16500 (4)mathMA 16500: Analytic Geometry And Calculus IIntroduction to differential and integral calculus of one variable, with applications. Conic sections. Designed for students who have had at least a one-semester calculus course in high school, with a grade of “A” or “B”, but are not qualified to enter MA 16200 or MA 16600 or the advanced placement courses MA 17300 or the honors calculus course MA 18100. Demonstrated competence in college algebra and trigonometry.
- orHonors Multivariate CalculusMA 27101 (5)mathMA 27101: Honors Multivariate Calculus
This course is the Honors version of MA 26100, Multivariate Calculus; it will also include a review of infinite series. The course is intended for first-year students who have credit for Calculus I and II. There will be a significant emphasis on conceptual explanation, but not on formal proof. Permission of department is required.
- Linear AlgebraorMA 26500 (3)mathMA 26500: Linear Algebra
Introduction to linear algebra. Systems of linear equations, matrix algebra, vector spaces, determinants, eigenvalues and eigenvectors, diagonalization of matrices, applications. Not open to students with credit in MA 26200, 27200, 35000 or 35100.